博弈论视角下不同主导权的生鲜电商供应链 决策分析

曾佑新,袁 盼,张怡雯

(江南大学 商学院,江苏 无锡 214122)

[摘要]针对由单一生鲜电商和农产品供应商组成的二级供应链系统,运用Stackelberg博弈模型求解集中决策、生鲜电商主导型决策、生鲜农产品供应商主导型决策三种不同决策模式下供应链的最优策略和最大利润,得到以下结论:不同主导模式会对供应链的最优策略产生不同影响;不同主导模式也会对供应链企业的利润产生不同影响,最大利润都是倾向于主导方的,但分散决策下两种模式的总利润均低于集中决策时的供应链利润;同一主导权下,生鲜电商和供应商的利润也会有所不同,主导供应链的一方其利润更大。

[关键词]博弈论;供应链决策;生鲜电商;电子商务;权利结构;网络消费;物流配送服务

[中图分类号] F272.3 [文献标志码] A [文章编号] 2096-3114(2019)05-0055-10

一、引言

近些年来,我国的电子商务发展迅猛,中国互联网络信息中心发布的《第43次中国互联网络发展状况统计报告》显示,截至2018年12月,我国网民规模达到8.29亿,互联网普及率为59.6%;网络购物用户和使用网上支付的用户占总体网民的比例均为72.5%,网络购物与互联网支付已成为网民使用比例较高的应用方式,并且随着物流配送服务的不断完善,人们的生活和消费方式发生了巨大改变,网络消费越来越受到消费者的青睐。随着实体零售的增速逐步放缓,网络零售逐渐涌现出来,在此基础上发展起来的生鲜电商便是主要代表之一。生鲜电商符合当前人们的生活方式和消费方式,因此它备受欢迎,目前市场上已出现了各种各样的生鲜电商平台,如基于超市与消费者对接的淘鲜达、自建配送仓的每日优鲜、加入新零售元素的盒马生鲜、基于传统电商平台搭建起来的苏宁生鲜和京东生鲜等。生鲜电商在为人们提供便利的同时,也会因为各种因素的存在而影响自身的利益。众所周知,供应链中的"主导权"在很大程度上影响着节点企业的最优决策与最大利益,因此本文拟研究生鲜电商和供应商分别占主导权时供应链节点企业以及供应链整体的最优决策问题,这对于生鲜电商、供应商均具有一定的借鉴意义。

二、文献综述

(一) 关于生鲜电商的发展方向及运营模式的研究

魏国辰总结发现,生鲜电商的物流模式主要有自营物流、自营物流+第三方物流、自营物流+消费者自提/自营配送三类,而且每种模式具有各自的适用性[1]。张力构建了垂直生鲜电商商业模式的要素模型,通过案例分析探讨了垂直生鲜电商商业模式的共性特征与差异性特征[2]。吴志坚和邱俊杰分析了我国农

[收稿日期] 2019-04-14

[基金项目] 无锡市哲学社会科学精品课题(WXSK19-C-03)

[作者简介] 曾佑新(1962—),男,江西赣州人,江南大学商学院教授,硕士生导师,主要研究方向为物流与供应链管理,邮箱: twilight445@163.com;袁盼(1994—),女,陕西安康人,江南大学商学院硕士生,主要研究方向为供应链管理;张怡雯(1995—),女,江苏苏州人,江南大学商学院硕士生,主要研究方向为供应链管理。

民专业合作社运营生鲜电商平台的优势、机遇和挑战^[3]。徐广姝和宋子龙对现有生鲜电商配送模式进行了归纳总结,并构建了适合中小型生鲜电商企业的"第三方物流配送+冷藏班车+消费者自提/送货上门"新型生鲜农产品配送模式,这有助于解决中小型生鲜电商企业冷链配送短板效应、配送成本高及配送效率低等问题^[4]。Han和Mu运用相关分析方法构建了产品知识、感知效益、感知风险和购买意愿之间的关系模型,研究了影响消费者对于生鲜农产品购买意愿的因素^{[5]。}Zhang分析了新鲜农产品发展的现状及困境,提出应以大数据为核心,基于互联网背景促进新产品电子商务的升级换代^[6]。盛佳怡等对中国生鲜电商当下的产业链、运营模式、发展历程等进行了分析,提出了适当的政策建议^[7]。张浩等研究了生鲜农产品O2O电商的多种运营模式,提出了最适合目前形势的生鲜农产品O2O电商运营模式^[8]。

(二)关于生鲜农产品供应链的研究

关于生鲜农产品供应链方面,当前研究主要集中在供应链的最优决策与协调两个方面。Wang等分析了单周期内随机产出条件下的生鲜农产品供应链的最大收益问题,并设计了风险分担契约来协调供应链^[9]。Sun等建立了新鲜农产品供应链的决策模型,结果表明利他主义偏好、新鲜程度和运输有效因素均可以显著影响供应链的最优决策^[10]。徐广姝和宋子龙研究了在生鲜宅配模式下生鲜电商与物流服务商组成的二级供应链,运用博弈模型分析了供应链的最优策略,并设计了"数量折扣+成本分担+收益共享"的组合契约^[11]。Zheng等考虑到易腐产品的性质,认为通过零售商和供应商之间的合同可以实现利润最大化,并设计了一份保鲜费用分摊合同、一份保鲜费用和收益分享合同对供应链进行协调^[12]。Lan等研究了供应链上企业的利益分配问题,认为可以采用协调机制协调供应链上各成员的行为,以实现利益平衡^[13]。Yan等研究了由制造商、分销商、零售商组成的三级生鲜农产品供应链系统,提出了一种基于改进的收益共享契约的利润分配模型,以使得供应链中的所有企业受益^[14]。白世贞和谢爽研究了由单一生鲜供应商和单一生鲜电商平台构成的二级生鲜电商供应链协调问题,运用 stackelberg 博弈模型比较了不同决策模式下的供应链最优决策,并构建了"收益共享—成本共担"的混合契约协调供应链^[15]。

(三)关于供应链的权利结构的研究

Ma等研究发现,只有主导制造商才能从批发价格优势战略中受益,主导制造商和零售商都可以从渠道优势战略中受益^[16]。赵金实等研究了供应商和零售商两种不同主导模式下供应链的利润构成情况,结果表明供应链成员可以通过主导权为自己谋取更多的利润^[17]。Luo等研究了两家具有差异化品牌的制造商之间的竞争,结果表明不同权利结构会对定价决策、制造商和零售商的利润产生影响,并且两家制造商之间的激烈竞争会伤害制造商而使零售商受益^[18]。刘军等通过构建不同主导模式下的博弈模型,讨论了供应链成员的最优价格策略问题,并得到了均衡状态下的供应链主导模式^[19]。方青等基于竞争环境视角研究了不同主导权零售商的双渠道供应链定价问题,结果表明拥有主导权的一方将使批发价格有利于自己,从而使其利润最大化^[20]。吴志丹和黄敏分别建立了集中决策、纳什均衡、制造商主导和零售商主导四种模型,研究主导模式对零售商负责回收的闭环供应链绩效的影响^[21]。兰天研究了由两个品牌差异化制造商和一个零售商组成的供应链定价问题,发现不同权利结构并不会对零售商最优定价决策造成影响^[22]。金亮针对单一制造商和单一线上零售商组成的供应链,建立了单渠道策略和O2O渠道策略下的供应链权利结构博弈模型,结果表明供应双方不同的权利结构会对供应链利润造成不同的影响^[23]。

综上可知,关于生鲜电商供应链的研究大多集中在基础理论部分,仅有少数文献运用模型研究供应链最优策略问题,但也仅仅是讨论了单一主导权下的供应链定价与协调问题。基于此,本文拟探讨不同权利结构下生鲜农产品供应商和生鲜电商组成的二级供应链系统运作的最优决策问题。考虑到价格和新鲜度等因素会对市场需求产生影响,本文拟运用博弈论相关知识构建供应链系统的利润模型,从而得出不同主导权下供应链的最优策略并将其进行对比分析,这对生鲜农产品供应商和生鲜电商都具有重要的参考价值和借鉴意义。

三、研究设计

(一) 问题描述

本文研究由一个生鲜农产品供应商(S)、一个生鲜电商(R)以及终端消费者组成的供应链系统。生鲜农产品供应商负责生鲜农产品的生产、加工、包装等活动;生鲜电商企业负责销售活动,首先在其电商平台上发布生鲜农产品信息(包括产地、价格、图片等);消费者根据相关信息决定是否购买以及购买量,且在线上下单和支付后由生鲜电商企业提供配送服务,在第一时间将产品配送到消费者手中。在此供应链系统中,生鲜电商和供应链都占据着举足轻重的位置,因此本文将研究集中决策、生鲜电商主导型决策和供应商主导型决策这三种决策模式下供应链的最优策略和最大利润问题。本文运用博弈论相关知识建立 stackelberg 博弈模型,供应链系统中的供应商只需生产并提供农产品给生鲜电商,而生鲜电商需要采取保鲜措施对农产品进行保鲜,保鲜水平越高,农产品的新鲜度就越高,市场需求量就会越大,相应地,生鲜电商也就存在保鲜成本。此外,生鲜电商将产品配送到消费者手中也会产生配送成本。

(二)变量说明

生鲜农产品供应商和生鲜电商企业作为一个利润系统,各自追求自身利润最大化;终端消费者的订购量取决于生鲜农产品的价格、新鲜度。相应的模型变量假定如下: ω 为供应商批发给生鲜电商的单位批发价格(为了保证生鲜农产品供应商有利可图,假设 $\omega > c_1$); c_1 为供应商的单位生产成本;p为生鲜电商的单位销售价格(为了保证生鲜电商的利益,假设 $p>\omega+c_2$); c_2 为生鲜电商的单位配送成本;e为生鲜农产品的新鲜度;k为生鲜电商的保鲜努力水平(k>0); π_s 为生鲜农产品供应商的利润; π_r 为生鲜电商的利润; π_s 为生鲜电商的利润; π_s 为整条供应链的总效益。

(三)模型假设

假设1:生鲜电商、生鲜农产品供应商都是理性经济人且为风险中性,以各自利润最大化为目标,合作过程中信息共享。

假设2:生鲜农产品的新鲜度受保鲜水平的影响,借鉴张旭和张庆的研究^[24],假设 $e = e_0 k (0 \le e \le 1)$,其中 $e_0 (0 \le e_0 \le 1)$ 表示生鲜农产品新鲜度对保鲜水平的敏感系数。

假设3:生鲜农产品的市场需求受销售价格、新鲜度的影响,即 $D = a - bp + \lambda e_0 k$,a 为生鲜农产品的市场规模,b 为价格敏感系数, λ 为新鲜度敏感系数,a、b、 λ 均大于0且为常数。

假设4:生鲜农产品的保鲜成本与保鲜努力水平之间为二次函数关系,即 $c(k) = \frac{1}{2}\mu k^2, \mu > 0$ 表示保鲜努力水平对保鲜努力成本的影响系数,该函数关系表明随着保鲜努力水平的提高,保鲜成本也相应增加。c(k)为凹函数,且边际成本递增。

四、供应链决策分析

(一)集中决策

供应链总利润为生鲜农产品供应商利润与生鲜电商企业利润之和,利润函数为:

$$\pi_c = (p - c_1 - c_2)D - c(k) = (p - c_1 - c_2)(a - bp + \lambda e_0 k) - \frac{1}{2}\mu k^2$$
 (1)

首先,对式(1)分别求p、k的一阶和二阶导数得到: $\frac{\partial \pi_c}{\partial p} = a + b(c_1 + c_2) + \lambda e_0 k - 2bp$, $\frac{\partial^2 \pi_c}{\partial p^2} = -2b < 0$;

$$\frac{\partial \pi_c}{\partial k} = \lambda e_0 \left(p - c_1 - c_2 \right) - \mu k, \frac{\partial^2 \pi_c}{\partial k^2} = -\mu < 0_{\circ}$$

由此我们得到 π_c 对p、k的二阶 hessian 矩阵为 $H = \begin{pmatrix} -2b & \lambda e_0 \\ \lambda e_0 & -\mu \end{pmatrix}$,因 $|H| \ge 0$,故二阶 hessian 矩阵为正定,此时 π_c 是p、k的凹函数,存在唯一最优解。由 $\frac{\partial \pi_c}{\partial p} = 0$ 和 $\frac{\partial \pi_c}{\partial k} = 0$ 可得:

结论 1: 集中决策下, 生鲜供应链的最优策略为 $p_c^* = \frac{(c_1 + c_2)(b\mu - \lambda^2 e_0^2) + a\mu}{2b\mu - \lambda^2 e_0^2}$,

$$k_c^* = \frac{\lambda e_0 \left[a - b \left(c_1 + c_2 \right) \right]}{2b\mu - \lambda^2 e_0^2}, Q_c^* = \frac{b\mu \left[a - b \left(c_1 + c_2 \right) \right]}{2b\mu - \lambda^2 e_0^2}.$$

我们将 p_e^* 、 k_e^* 代入式(1),可得到:

结论2:集中决策时供应链最大利润为
$$\pi_c^* = \frac{\mu \left[a - b \left(c_1 + c_2 \right) \right]^2}{2 \left(2b\mu - \lambda^2 e_0^2 \right)}$$
 (2)

结论1和结论2说明在集中决策下,当生鲜电商的销售价格为 p_c *、保鲜努力水平为 k_c *、单周期内生鲜电商的订购量(市场需求D)为 Q_c *时,供应链利润达到最大值 π_c *。此时,供应链上的节点企业即生鲜电商和生鲜农产品供应商的利润也相应处于一个较高的水平。

(二) 生鲜电商主导型供应链分散决策(R型)

分散决策下生鲜农产品供应商和生鲜电商作为独立的利益主体分开决策。在此模式下,生鲜电商为主导者,农产品供应商为跟随者,所以在决策时生鲜电商从自身利益最大化以及根据掌握到的市场需求信息出发,先决定订购量、销售价格、最优保鲜水平;农产品供应商在此基础上决定最优批发价格,若生鲜电商接受此批发价格,则合作达成,若不接受,则重新调整,直至双方达成一致意见。本文采用逆向归纳法求解该模型。

首先,我们求解生鲜农产品供应商的最优策略。值得注意的是,当生鲜电商为供应链主导者时,将批发价格 ω_1 直接带入生鲜农产品供应商的利润函数中并不能求得最优值,此时需要将销售价格 p_1 表示为批发价格 ω_1 的函数,设 $p_1=\omega_1+n,n$ 表示批发价的溢价。

由此,我们得到生鲜农产品供应商的利润函数为:

$$\pi_{s1} = (\omega_1 - c_1)D = (\omega_1 - c_1)\left[a - b(\omega_1 + n) + \lambda e_0 k_1\right]$$
(3)

我们对式(3)中的
$$\omega_1$$
求一阶和二阶偏导数可得 $\frac{\partial \pi_{s1}}{\partial \omega_1} = a - b \left(2\omega_1 + n - c_1\right) + \lambda e_0 k_1, \frac{\partial^2 \pi_{s1}}{\partial \omega_1^2} = -2b < 0,$

故 π_{s_1} 为 ω_1 的严格凹函数,存在唯一最优解。我们令 $\frac{\partial \pi_{s_1}}{\partial \omega_1}$ =0,可得到生鲜农产品供应商的最优批发价

榕
$$\omega_1^* = \frac{a + b(c_1 - n) + \lambda e_0 k_1}{2b}$$

然后,我们求解生鲜电商的最优策略。生鲜电商的利润函数为:

$$\pi_{r1} = \left(p_1 - \omega_1^* - c_2\right) \left(a - bp_1 + \lambda e_0 k_1\right) - \frac{1}{2} \mu k_1^2 \tag{4}$$

因为 $p_1 = \omega_1^* + n$,我们将 ω_1^* 和 $p_1 = \omega_1^* + n$ 带入式(4)并化简可得到:

$$\pi_{r1} = \frac{-bn^2 + n\left[a + b\left(c_2 - c_1\right) + \lambda e_0 k_1\right] + \left(bc_1 - a - \lambda e_0 k_1\right)c_2 - \mu k_1^2}{2} \tag{5}$$

此时,
$$\pi_{r_1}$$
是 n 和 k_1 的函数。由式(5)得到 π_{r_1} 对 n 、 k_1 的二阶 hessian矩阵为 $H_1 = \begin{pmatrix} -b & \frac{\lambda e_0}{2} \\ \frac{\lambda e_0}{2} & -\mu \end{pmatrix}$, $|H_1| \ge 0$,

故二阶 hessian 矩阵为正定, π_{r_1} 是 n 和 k_1 的严格凹函数, 且存在唯一最优解。由 $\frac{\partial \pi_{r_1}}{\partial n} = 0$ 和 $\frac{\partial \pi_{r_1}}{\partial k_1} = 0$ 可得

$$n = \frac{2\mu \left[a + b\left(c_2 - c_1 \right) \right] - \lambda^2 e_0^2 c_2}{4b\mu - \lambda^2 e_0^2}, k_1 = \frac{\lambda e_0 \left[a - b\left(c_1 + c_2 \right) \right]}{4b\mu - \lambda^2 e_0^2}; 将 n \ k_1 带 \ p_1 = \omega_1^* + n \ \text{并化简可得到生鲜电商}$$

的最优销售价格
$$p_1^* = \frac{\mu \left[3a + b \left(c_1 + c_2 \right) \right] - \lambda^2 e_0^2 \left(c_1 + c_2 \right)}{4b\mu - \lambda^2 e_0^2}$$
,最优保鲜努力水平 $k_1^* = \frac{\lambda e_0^2 \left[a - b \left(c_1 + c_2 \right) \right]}{4b\mu - \lambda^2 e_0^2}$ 。 综上可得:

结论3:在生鲜电商主导型的分散决策下,生鲜供应链的最优策略为 $p_1^* = \frac{3a\mu + (c_1 + c_2)(b\mu - \lambda^2 e_0^2)}{4b\mu - \lambda^2 e_0^2}$,

$$k_{1}^{*} = \frac{\lambda e_{0}^{2} \left[a - b \left(c_{1} + c_{2} \right) \right]}{4b\mu - \lambda^{2} e_{0}^{2}}, \omega_{1}^{*} = \frac{\mu \left[a + b \left(3c_{1} - c_{2} \right) \right] - \lambda^{2} e_{0}^{2} c_{1}}{4b\mu - \lambda^{2} e_{0}^{2}}, Q_{1}^{*} = \frac{b\mu \left[a - b \left(c_{1} + c_{2} \right) \right]}{4b\mu - \lambda^{2} e_{0}^{2}} \circ$$

结论4:生鲜农产品供应商、生鲜电商以及整条供应链的最大利润分别为:

$$\pi_{s1}^* = \frac{b\mu^2 \left[a - b\left(c_1 + c_2\right) \right]^2}{\left(4b\mu - \lambda^2 e_0^2\right)^2} \tag{6}$$

$$\pi_{r1}^* = \frac{\mu \left[a - b \left(c_1 + c_2 \right) \right]^2}{2 \left(4b\mu - \lambda^2 e_0^2 \right)} \tag{7}$$

$$\pi_1^* = \pi_{s1}^* + \pi_{r1}^* = \frac{\mu \left(6b\mu - \lambda^2 e_0^2\right) \left[a - b\left(c_1 + c_2\right)\right]^2}{2\left(4b\mu - \lambda^2 e_0^2\right)^2}$$
(8)

结论3和结论4表明,供应链节点企业在分散决策且是由生鲜电商主导的分散决策下,生鲜电商优先考虑自身的最大利润。生鲜电商先决定自己的销售价格、保鲜努力水平以及订购量,通过计算分析得出销售价格为 p_1^* ,保鲜努力水平为 k_1^* ,最优订购量为 Q_1^* ,在此基础上生鲜农产品供应商再决定其农产品的批发价格为 ω_1^* ,从而得出生鲜农产品供应商、生鲜电商以及整条供应链的最大利润分别为 π_1^* , π_1^* , π_1^* , π_1^*

(三)生鲜农产品供应商主导型的分散决策(S型)

在该模式下生鲜农产品供应商为主导者,生鲜电商为跟随者,所以在分散决策时生鲜农产品供应商根据以往的数据先确定有利于自己的最优批发价格,然后生鲜电商根据供应商的批发价格从自身利益最大化以及根据掌握到的市场需求信息出发,决定其订购量、销售价格以及最优保鲜水平。我们采用逆向归纳法求解该模型。

首先,我们求解生鲜电商的最优策略。在该分散决策模式下,生鲜电商的利润函数为:

$$\pi_{r_2} = (p_2 - \omega_2 - c_2)(a - bp_2 + \lambda e_0 k_2) - \frac{1}{2} \mu k_2^2$$
(9)

仿照前文推导过程,式(9)的二阶 hessian 矩阵为 $H_2 = \begin{pmatrix} -2b & \lambda e_0 \\ \lambda e_0 & -\mu \end{pmatrix}, |H_2| \ge 0$,故二阶 hessian 矩阵为正

定,此时 π_{r_2} 是 p_2 、 k_2 的凹函数,存在唯一最优解。由 $\frac{\partial \pi_{r_2}}{\partial p_2} = 0$ 和 $\frac{\partial \pi_{r_2}}{\partial k_2} = 0$ 可得生鲜电商最优销售价格 $p_2^* = 0$

$$\frac{\left(b\mu - \lambda^2 e_0^2\right)\left(\omega_2 + c_2\right) + a\mu}{2b\mu - \lambda^2 e_0^2}, 最优保鲜努力水平 k_2^* = \frac{\lambda e_0\left[a - b\left(\omega_2 + c_2\right)\right]}{2b\mu - \lambda^2 e_0^2}.$$

然后,我们求解生鲜农产品供应商的最优策略。生鲜农产品供应商的利润函数为:

$$\pi_{s2} = (\omega_2 - c_1)(a - bp_2 + \lambda e_0 k_2) \tag{10}$$

我们将p*、k*带入式(10)并化简可得到:

$$\pi_{s2} = \frac{b\mu (\omega_2 - c_1) \left[a - b(\omega_2 + c_2) \right]}{2b\mu - \lambda^2 e_0^2} \tag{11}$$

我们对式(11)求一阶和二阶偏导数可得到
$$\frac{\partial \pi_{s2}}{\partial \omega_2} = \frac{b^2 \mu \left(\omega_2 - c_1\right) + b \mu \left[a - b\left(\omega_2 + c_2\right)\right]}{2b\mu - \lambda^2 e_0^2},$$

 $\frac{\partial^2 \pi_{s2}}{\partial \omega_2^2} = \frac{-b^2 \mu}{2b\mu - \lambda^2 e_0^2} < 0,$ 故 π_{s2} 是 ω_2 的严格凹函数, 令 $\frac{\partial \pi_{s2}}{\partial \omega_2} = 0$ 可解得生鲜农产品供应商的最优批发价格为

$$\omega_2^* = \frac{a + b(c_1 - c_2)}{2b}$$
。综上可得:

结论 5: 在生鲜供应商主导型的分散决策下,生鲜供应链的最优策略为

$$p_{2}^{*} = \frac{\mu b^{2}(c_{1} + c_{2}) + b\left[3a\mu - \lambda^{2}e_{0}^{2}(c_{1} + c_{2})\right] - a\lambda^{2}e_{0}^{2}}{2b(2b\mu - \lambda^{2}e_{0}^{2})}, \qquad k_{2}^{*} = \frac{\lambda e_{0}\left[a - b\left(c_{1} + c_{2}\right)\right]}{2(2b\mu - \lambda^{2}e_{0}^{2})}, \qquad \omega_{2}^{*} = \frac{a + b\left(c_{1} - c_{2}\right)}{2b},$$

$$Q_2^* = \frac{b\mu \left[a - b\left(c_1 + c_2\right)\right]}{2\left(2b\mu - \lambda^2 e_0^2\right)}$$

结论6:生鲜农产品供应商、生鲜电商以及整条供应链的最大利润分别为:

$$\pi_{s2}^* = \frac{\mu \left[a - b \left(c_1 + c_2 \right) \right]^2}{4 \left(2b\mu - \lambda^2 e_0^2 \right)} \tag{12}$$

$$\pi_{r2}^* = \frac{\mu \left[a - b \left(c_1 + c_2 \right) \right]^2}{8 \left(2b\mu - \lambda^2 e_0^2 \right)} \tag{13}$$

$$\pi_{2}^{*} = \pi_{s2}^{*} + \pi_{r2}^{*} = \frac{3\mu \left[a - b \left(c_{1} + c_{2} \right) \right]^{2}}{8 \left(2b\mu - \lambda^{2} e_{0}^{2} \right)} \tag{14}$$

结论5和结论6表明,在生鲜农产品供应链主导的分散决策下,生鲜农产品供应商优先考虑自身的最大利润,先决定生鲜农产品的批发价格为 ω_2^* 。接着,生鲜电商决定自己的销售价格、保鲜努力水平以及订购量,当销售价格为 p_2^* 、保鲜努力水平为 k_2^* 、最优订购量为 Q_2^* 时,生鲜农产品供应商、生鲜电商的最大利润分别为 π_{s2}^* 、 π_{r2}^* ,整条供应链的最大利润 π_2^* 为生鲜农产品供应商和生鲜电商的利润总和。

(四)模型对比分析

上述三种模型的最优解及最大利润归纳见表1。我们对表1中的结果进行整理,可得到以下命题:

命题1:不同主导权下,生鲜电商的最优销售价格、最优保鲜努力水平、供应商的最优批发价格满足 $p_1^* > p_2^*, k_1^* < k_2^*, \boldsymbol{\omega}_1^* < \boldsymbol{\omega}_2^*$ 。

证 明:
$$p_1^* - p_2^* = \frac{\lambda^2 e_0^2 (b\mu - \lambda^2 e_0^2) \left[a - b \left(c_1 + c_2 \right) \right]}{2b \left(2b\mu - \lambda^2 e_0^2 \right) \left(4b\mu - \lambda^2 e_0^2 \right)} > 0$$
, $\omega_1^* - \omega_2^* = -\frac{\left(b\mu - \frac{1}{2} \lambda^2 e_0^2 \right) \left[a - b \left(c_1 + c_2 \right) \right]}{b \left(4b\mu - \lambda^2 e_0^2 \right)} < 0$,

$$\frac{k_1^*}{k_2^*} = \frac{4b\mu - 2\lambda^2 e_0^2}{4b\mu - \lambda^2 e_0^2} < 1$$
,命题 1 得证。

命题1说明不同主导模式会对供应链的最优策略产生不同影响。R型主导模式下的销售价格大于S型主导模式下的价格,而保鲜努力水平却小于S型主导模式下的水平。S型主导模式下的批发价格、保鲜

努力水平均高于R型主导模式下的最优解。

类型	集中决策				
		生鲜电商主导型	供应商主导型		
p^*	$p_{c}^{*} = \frac{(c_{1} + c_{2})(b\mu - \lambda^{2}e_{0}^{2}) + a\mu}{2b\mu - \lambda^{2}e_{0}^{2}}$	$p_{d1}^* = \frac{3a\mu + (c_1 + c_2)(b\mu - \lambda^2 e_0^2)}{4b\mu - \lambda^2 e_0^2}$	$p_{d2}^* = \frac{\mu b^2 (c_1 + c_2) + b \left[3a\mu - \lambda^2 e_0^2 (c_1 + c_2) \right] - a\lambda^2 e_0^2}{2b \left(2b\mu - \lambda^2 e_0^2 \right)}$		
k^*	$k_c^* = \frac{\lambda e_0 \left[a - b \left(c_1 + c_2 \right) \right]}{2b\mu - \lambda^2 e_0^2}$	$k_{d1}^* = \frac{\lambda e_0^2 \left[a - b \left(c_1 + c_2 \right) \right]}{4b\mu - \lambda^2 e_0^2}$	$k_{d2}^* = rac{\lambda e_0 \left[a - b \left(c_1 + c_2 ight) ight]}{2 \left(2b \mu - \lambda^2 e_0^2 ight)}$		
ω^*		$\omega_{d1}^* = \frac{\mu \left[a + b \left(3c_1 - c_2 \right) \right] - \lambda^2 e_0^2 c_1}{4b\mu - \lambda^2 e_0^2}$	$\omega_{d2}^* = \frac{a + b\left(c_1 - c_2\right)}{2b}$		
π_{r}^{*}		$\pi_{rd1}^* = \frac{\mu \Big[a - b (c_1 + c_2) \Big]^2}{2 \Big(4b \mu - \lambda^2 e_0^2 \Big)}$	$\pi_{rd2}^* = \frac{\mu \Big[a - b (c_1 + c_2) \Big]^2}{8 \Big(2b\mu - \lambda^2 e_0^2 \Big)}$		
π_s^*		$\pi_{sd1}^* = \frac{b\mu^2 \left[a - b(c_1 + c_2) \right]^2}{\left(4b\mu - \lambda^2 e_0^2 \right)^2}$	$\pi_{sd2}^* = \frac{\mu \Big[a - b \big(c_1 + c_2 \big) \Big]^2}{4 \Big(2b\mu - \lambda^2 e_0^2 \Big)}$		
π^*	$\pi_{c}^{*} = \frac{\mu \left[a - b \left(c_{1} + c_{2} \right) \right]^{2}}{2 \left(2b\mu - \lambda^{2} e_{0}^{2} \right)}$	$\pi_{d1}^* = \frac{\mu \left(6b\mu - \lambda^2 e_0^2\right) \left[a - b\left(c_1 + c_2\right)\right]^2}{2\left(4b\mu - \lambda^2 e_0^2\right)^2}$	$\pi_{d2}^* = rac{3\mu \Big[a - b ig(c_1 + c_2 ig) \Big]^2}{8 \Big(2b\mu - \lambda^2 e_0^2 \Big)}$		

表1 生鲜电商供应链三种模式比较

命题2:不同主导权下,生鲜电商、生鲜农产品供应商以及整个供应链的利润满足 $\pi_{r1}^* > \pi_{r2}^*, \pi_{s1}^* < \pi_{s2}^*, \pi_1^* < \pi_e^*, \pi_2^* < \pi_e^*$ 。

证 明 :
$$\pi_{r_1}^* - \pi_{r_2}^* = \frac{\mu \left(4b\mu - 3\lambda^2 e_0^2\right) \left[a - b\left(c_1 + c_2\right)\right]^2}{8\left(2b\mu - \lambda^2 e_0^2\right) \left(4b\mu - \lambda^2 e_0^2\right)} > 0$$
, $\pi_{s_1}^* - \pi_{s_2}^* = -\frac{\mu \left[\left(\lambda^2 e_0^2 - 2b\mu\right)^2 + 4b^2\mu^2\right] \left[a - b\left(c_1 + c_2\right)\right]^2}{4\left(2b\mu - \lambda^2 e_0^2\right) \left(4b\mu - \lambda^2 e_0^2\right)^2} < 0$,
$$\frac{\pi_1^*}{\pi_c^*} = \frac{\left(4b\mu - \lambda^2 e_0^2\right)^2 - 4b^2\mu^2}{\left(4b\mu - \lambda^2 e_0^2\right)^2} < 1$$
, $\frac{\pi_2^*}{\pi_c^*} = \frac{3}{4} < 1$, 命题 2 得证。

命题2说明,当生鲜电商主导供应链时,其利润大于供应商的利润;当生鲜农产品供应商主导供应链时,其利润大于生鲜电商的利润。也就是说,最大利润都是倾向于主导方的。然而,分散决策下这两种模式的总利润均低于集中决策时的供应链利润,因此供应链双方要想达到共赢的局面,集中决策才是最优的。

命题3:同一主导权下,生鲜电商和供应商的最大利润满足 $\pi_{11}^* < \pi_{11}^*, \pi_{12}^* > \pi_{12}^*$

证明:
$$\pi_{s1}^* - \pi_{r1}^* = -\frac{\mu \left(2b\mu - \lambda^2 e_0^2\right) \left[a - b\left(c_1 + c_2\right)\right]^2}{2\left(4b\mu - \lambda^2 e_0^2\right)^2} < 0, \pi_{s2}^* - \pi_{r2}^* = \frac{\mu \left[a - b\left(c_1 + c_2\right)\right]^2}{8\left(2b\mu - \lambda^2 e_0^2\right)^2} > 0,$$
命题 3 得证。

命题3说明主导权对供应链上不同主体企业的最优利润也会产生影响。当生鲜电商主导供应链时, 生鲜电商的利润大于供应商的利润;当生鲜农产品供应商主导供应链时,供应商的利润大于生鲜电商的 利润。

五、算例分析

为了进一步验证上述模型及结论的有效性,我们通过数值算例来考察上述理论分析结果。参照相关文献的参数设计 $^{[9,11-12,15]}$,本文假设各参数取值分别为: a=100, b=0.8, $c_1=8$, $c_2=3$, $e_0=0.3$, $\lambda=0.5$, $\mu=0.2$, 不同模式下的决策结果和最大利润见表2。(结果保留两位小数)

由表2可以看出,算例的结果与前文的模型理论分析基本一致。(1)分散决策时,供应链的决策会受到

主导模式的影响。生鲜电商主导型供应链的销售价格为99.62,保鲜努力水平为22.15,批发价格为37.54;而农产品供应商主导型供应链的销售价格为98.66,保鲜努力水平为22.99,批发价格为65.00。当生鲜电商主导供应链时,首先考虑的是自身利益最大化,因此其会尽可

表 2 生鲜电商供应链三种模式的结果分析

决策类型	p	k	ε	$\boldsymbol{\pi}_r^*$	$\boldsymbol{\pi}_{s}^{*}$	$oldsymbol{\pi}_{c}^{*}$
集中决策	72.31	45.98				2795.78

分散決策 R主导型 99.62 22.15 37.54 1346.95 698.02 2044.97 S主导型 98.66 22.99 65.00 698.95 1397.89 2096.84

能地通过提高销售价格来增加其利润,因为有销售价格来保证生鲜电商的最大利润,所以生鲜电商会适当地降低保鲜努力水平,进而降低保鲜成本,以此来保证自己的最大利润。当生鲜农产品供应商主导供应链时,其会尽可能地将批发价格定到较高的标准以保持自己的优势;而生鲜电商会通过提高自己的保鲜努力水平来获取更多的订购量,以此保证自己的利益不会遭受太多损失。由此,命题1得到验证。(2)分散决策时,不同主导模式下的生鲜电商、生鲜农产品供应商以及整个供应链的利润也有所不同。当生鲜电商主导供应链时,生鲜电商的利润为1346.95,而供应商的利润为698.02,供应链的总利润为2044.97;当农产品供应商主导供应链时,生鲜电商的利润为698.94,供应商的利润为1397.89,供应链的总利润为

2096.84。但是,集中决策下的供应链总利润为2795.78,高于R主导型和S主导型下的供应链总利润。由此,命题2得到验证。(3)分散决策时,同一主导模式下,生鲜电商和供应商的利润均有很大差别。在生鲜电商主导型供应链中,生鲜电商的利润为1346.95,供应商的利润为698.02;在农产品供应商主导型供应链中,供应商的利润为1397.89,生鲜电商的利润为698.94。由此,命题3得到验证。

下面我们再来分析参数变化对不同主导模式下生鲜 电商、农产品供应商利润的影响。(1)通过图1我们可以 发现:不同主导模式下,生鲜电商和农产品供应商的利润 与价格敏感系数成反比,即随着价格敏感系数b的增大, 生鲜电商和农产品供应商的利润随之减少,这说明消费 者对农产品的价格越敏感,相应的购买量就会越少,因此 不管在何种主导模式下,供应商和生鲜电商的利润都会 减少。(2)通过图2我们可以发现:不同主导模式下,生鲜 电商和农产品供应商的利润与保鲜成本系数成反比,即 随着保鲜成本系数μ的增大,生鲜电商和农产品供应商 的利润随之减少,这说明牛鲜电商的保鲜努力水平越高, 保鲜成本会越多,在收入保持不变的情况下,生鲜电商和 供应商的利润便会减少。(3)通过图3我们可以发现:不 同主导模式下,生鲜电商和农产品供应商的利润与保鲜 水平敏感系数成正比,即随着保鲜成本系数 e。的增大,生 鲜电商和农产品供应商的利润随之增加。保鲜成本系数 越大,保鲜成本越高,这说明生鲜电商的保鲜水平也越 高, 生鲜农产品就越新鲜, 从而需求量会增加, 最终利润 也会增加。(4)通过图4我们可以发现:不同主导模式下, 生鲜电商和农产品供应商的利润与新鲜度敏感系数成正 比,即随着新鲜度敏感系数λ的增大,生鲜电商和农产品

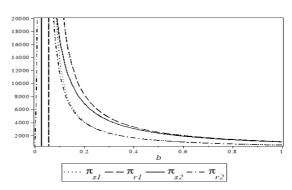


图1 不同主导模式下 b 对企业利润的影响

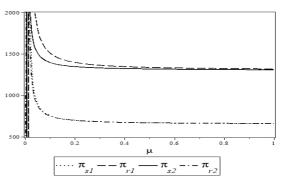


图 2 不同主导模式下μ对企业利润的影响

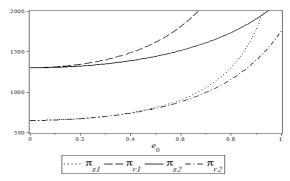


图3不同主导模式下 e_0 对企业利润的影响

供应商的利润随之增加。

六、结论

本文针对由单一生鲜电商和农产品供应商组成的二级供应链系统,研究了集中决策、R主导型决策、S主导型决策这三种不同模式下供应链的最优策略和最大利润问题,得到以下结论:(1)不同主导模式会对供应链的最优策略产生不同影响。R型主导模式下的销售价格大于S型主导模式下的价格,而保鲜努力水平却小于S型主导模式下的水平。S型主导模式下的批发价格、保鲜努力水

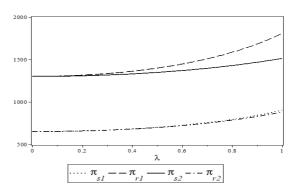


图4不同主导模式下 λ对企业利润的影响

平均高于R型主导模式下的最优解。(2)不同主导模式会对供应链企业的利润产生不同影响。当生鲜电商主导供应链时,其利润大于供应商利润;当生鲜农产品供应商主导供应链时,其利润大于生鲜电商利润。然而,分散决策下这两种模式的总利润均低于集中决策时的供应链利润。(3)同一主导权下,生鲜电商和供应商的利润会有所不同。当生鲜电商主导供应链时,生鲜电商的利润大于供应商的利润;当生鲜农产品供应商主导供应链时,供应商的利润大于生鲜电商的利润。

综上所述,主导权在供应链中起着重要的用,拥有主导权的一方会有更多的优势来获取更多的利润, 因此生鲜电商要想获得最优决策和最大利润,就要掌握供应链的主导权。然而,这对于被主导方生鲜农 产品供应商来说却是极为不利的,所以在实际中双方可以对相关参数及影响因素进行适当的调整和控 制,以此来缩小利润差距,尽量达到对双方都有利的状态。当然,本文在后续研究中会考虑市场需求为不 确定性状态下的供应链最优策略问题,而且还会设计不同的契约方式对不同主导权下的供应链进行协 调,使之处于相对均衡状态。

参考文献:

- [1]魏国辰.电商企业生鲜产品物流模式创新[J].中国流通经济,2015(1):43-50.
- [2] 张力.垂直生鲜电商商业模式的构建研究[J].中国商论,2015(18):40-43.
- [3] 吴志坚, 邱俊杰. 农业合作社运营生鲜电商平台的挑战、意义与机制[J]. 科技管理研究, 2015(19):197-201.
- [4] 徐广姝,宋子龙.生鲜电商配送模式创新探究[J]. 商业经济研究,2016(23):72-73.
- [5] Han D, Mu J. The research on the factors of purchase intention for fresh agricultural products in an e-commerce environment [J]. IOP Conference Series: Earth and Environmental Science, 2017, 34(6):100-115.
- [6] Zhang T. Paths for upgrade and transformation of e-commerce of China's fresh agricultural products based on whole industry supply chain[J]. 亚洲农业研究:英文版,2017,18(3):1345-1356.
- [7] 盛佳怡, 张铷钫, 李晨曦. 生鲜电商在中国的发展现状及前景[J]. 中国食品, 2018(19): 154-155.
- [8] 张浩,崔炎,于雷. 生鲜农产品电商 O2O 模式的比较[J]. 江苏农业科学, 2018(17): 307-315.
- [9] Wang D P, Cheng L, Li F. Supply chain coordination of agricultural product under random yield [J]. Control & Decision, 2012,27 (6):881-885.
- [10] Sun Y, Yuan X, Shi K. Research on decision of supply chain of fresh agricultural product based on altruism preference [J]. System Engineering Theory and Practice, 2017, 37(5): 1243–1253.
- [11] 徐广姝,宋子龙.生鲜电商与物流服务商的契约协调——基于生鲜宅配模式的分析[J].商业研究,2017(2):151-159.
- [12] Zheng Q, Petros I, Fan T, et al. Supply chain contracting coordination for fresh products with fresh-keeping effort[J]. Industrial Management & Data Systems, 2017, 117(3):289-302.
- [13] Lan W. Distribution of the benefits of fresh produce E-commerce supply chain [J]. Logistics Engineering and Management, 2018,78(3):274-300.

曾佑新,等:博弈论视角下不同主导权的生鲜电商供应链决策分析

- [14] Yan B, Wu X, Ye B, et al. Three-level supply chain coordination of fresh agricultural products in the internet of things[J]. Industrial Management & Data Systems, 2017, 117(9):1842–1865.
- [15] 白世贞,谢爽.基于混合契约的生鲜电商供应链协调策略[J].控制与决策,2018(11):2104-2112.
- [16] Ma L, Zhang R, Guo S, et al. Pricing decisions and strategies selection of dominant manufacturer in dual-channel supply chain [J]. Economic Modelling, 2012, 29(6):2558–2565.
- [17] 赵金实, 段永瑞, 王世进, 等. 不同主导权位置情况下零售商双渠道策略的绩效对比研究[J]. 管理工程学报, 2013(1): 171-177.
- [18] Luo Z, Chen X, Chen J, et al. Optimal pricing policies for differentiated brands under different supply chain power structures [J]. European Journal of Operational Research, 2016, 47(6): 345–378.
- [19] 刘军, 谭德庆, 李良. 供应链价格策略与主导模式博弈分析[J]. 软科学, 2017(4): 132-138.
- [20] 方青,任亮,王雅娟.考虑主导权的零售商双渠道供应链定价策略[J].武汉科技大学学报,2017(4):302-306.
- [21] 吴志丹,黄敏.不同主导模式下零售商回收的闭环供应链绩效与协调[J].科技管理研究,2018(20):228-235.
- [22] 兰天. 不同主导权对供应链定价与品牌差异化策略的影响研究[J]. 软科学, 2018(2): 139-144.
- [23] 金亮. 不同主导权下线上零售商定价与O2O渠道策略研究[J]. 系统科学与数学, 2018(8): 946-959.
- [24] 张旭,张庆.保鲜控制损耗下考虑公平关切的生鲜品供应链协调[J].系统科学学报,2017(3):112-116.

「责任编辑:王丽爱]

Decision-making Analysis of Fresh E-commerce Supply Chain with Different Dominant Powers from the Perspective of Game Theory

Zeng Youxin, Yuan Pan, Zhang Yiwen

(School of Business, Jiangnan University, Wuxi 214122, China)

Abstract: Aiming at the secondary supply chain system consisting of a single fresh E-commerce and a single agricultural product supplier, the Stackelberg Game model is used to solve the optimal strategy and maximum profit of suppliers under three different decision modes: centralized decision-making, fresh e-commerce-oriented decision-making and fresh agricultural product supplier-oriented decision-making. It is concluded that different dominant modes have different effects on the optimal strategy of supply chain. Different dominant modes also have different effects on the profits of supply chain enterprises. The maximum profits tend to be dominant, but the total profits of the two modes under decentralized decision-making are lower than those under centralized decision-making. Under the same dominant power, the profits of fresh E-commerce and suppliers will be different, and the profit of the dominant supply chain side will be greater.

Key Words: game theory; supply chain decision; fresh E-commerce; E-commerce; rights structure; online consumption; logistics service