人机协同能增强企业韧性吗?
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(72002085)


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在技术变革与环境不确定性交织的背景下,韧性成为衡量企业危机应对与可持续发展的核心能力。以2010—2023年沪深A股上市公司为样本,构建人机协同与企业韧性测度指标,实证分析人机协同对企业韧性的影响及其作用机制。研究发现,人机协同显著提升了企业在面对外部冲击时的抵抗能力与恢复能力。机制检验表明,人机协同通过降低代理成本与融资约束等降低治理成本,通过降低投资偏离程度、减少超额雇员等提升配置效率,从而增强企业韧性。异质性分析表明,该影响在机器人渗透度较高、所处行业竞争程度较低,且未位于国家级大数据实验区的企业中表现得更加显著。研究结论丰富了人机协同与企业韧性研究的理论内涵,并为企业在不确定性环境下通过技术嵌入提升韧性水平提供了新思路。

    Abstract:

    Against the backdrop of intertwined technological change and environmental uncertainty, resilience has become a core capability for measuring a company’s crisis response and sustainable development. This paper takes listed companies on the Shanghai and Shenzhen A-shares from 2010 to 2023 as a sample, constructs indicators for measuring human-machine collaboration and corporate resilience, and empirically analyzes the impact of human-machine collaboration on corporate resilience and its mechanism of action. The study finds that human-machine collaboration significantly enhances a company’s resistance and recovery capabilities when facing external shocks.Mechanism tests show that human-machine collaboration can enhance enterprise resilience by reducing agency costs and financing constraints, reducing investment deviation degree and reducing excess employees.Heterogeneity analysis shows that this effect is more pronounced in companies with higher robot penetration rates, lower competitive levels in their industries, and those not located in national big data experimental areas. This paper enriches the theoretical connotations of research on human-machine collaboration and corporate resilience, and provides new ideas for companies to enhance their resilience levels through technology embedding in an uncertain environment.

    参考文献
    相似文献
    引证文献
引用本文

罗栋梁,刘博雅,王 彦.人机协同能增强企业韧性吗?[J].南京审计大学学报,2025,22(6):90-100

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-12-15
  • 出版日期: